Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Numerical forecasts of plasma convective instability in the postsunset equatorial ionosphere are made based on data from the Ionospheric Connections Explorer satellite (ICON) following the method outlined in a previous study. Data are selected from pairs of successive orbits. Data from the first orbit in the pair are used to initialize and force a numerical forecast simulation, and data from the second orbit are used to validate the results 104 min later. Data from the IVM plasma density and drifts instrument and the MIGHTI red‐line thermospheric winds instrument are used to force the forecast model. Thirteen (16) data set pairs from August (October), 2022, are considered. Forecasts produced one false negative in August and another false negative in October. Possible causes of forecast discrepancies are evaluated including the failure to initialize the numerical simulations with electron density profiles measured concurrently. Volume emission 135.6‐nm OI profiles from the Far Ultraviolet (FUV) instrument on ICON are considered in the evaluation.more » « less
-
Abstract Measurements from the Ionospheric Connections Explorer satellite (ICON) form the basis of direct numerical forecast simulations of plasma convective instability in the postsunset equatorialFregion ionosphere. ICON data are selected and used to initialize and force the simulations and then to test the results one orbit later when the satellite revisits the same longitude. Data from the IVM plasma density and drifts instrument and the MIGHTI red‐line thermospheric winds instrument are used to force the simulation. Data from IVM are also used to test for irregularities (electrically polarized plasma depletions). Fourteen datasets from late March 2022, were examined. The simulations correctly predicted the occurrence or non‐occurrence of irregularities 12 times while producing one false positive and one false negative. This demonstrates that the important telltales of instability are present in the ICON state variables and that the important mechanisms for irregularity formation are captured by the simulation code. Possible refinements to the forecast strategy are discussed.more » « less
-
Abstract Oblique propagation of gravity waves (GWs) refers to the latitudinal propagation (or vertical propagation away from their source) from the low‐latitude troposphere to the polar mesosphere. This propagation is not included in current gravity wave parameterization schemes, but may be an important component of the global dynamical structure. Previous studies have revealed a high correlation between observations of GW pseudomomentum flux (GWMF) from monsoon convection and Polar Mesospheric Clouds (PMCs) in the northern hemisphere. In this work, we report on data and model analysis of the effects of stratospheric sudden warmings (SSWs) in the northern hemisphere, on the oblique propagation of GWs from the southern hemisphere tropics, which in turn influence PMCs in the southern summer mesosphere. In response to SSWs, the propagation of GWs at the midlatitude winter hemisphere is enhanced. This enhancement appears to be slanted toward the equator with increasing altitude and follows the stratospheric eastward jet. The oblique propagation of GWs from the southern monsoon regions tends to start at higher altitudes with a sharper poleward slanted structure toward the summer mesosphere. The correlation between PMCs in the summer southern hemisphere and the zonal GWMF from 50°N to 50°S exhibits a pattern of high‐correlation coefficients that connects the winter stratosphere with the summer mesosphere, indicating the influence of Interhemispheric Coupling mechanism. Temperature and wind anomalies suggest that the dynamics in the winter hemisphere can influence the equatorial region, which in turn, can influence the oblique propagation of monsoon GWs.more » « less
An official website of the United States government
